Einfihrung in die OOP, Folge 3: Exkurs SRP

The Single Responsibility Principle (Gruppenarbeit)

The Single Responsibility Principle (SRP) states
that a class or module should have one, and
only one, reason to change. This principle gives
us both a definition of responsibility, and a
guidelines for class size. Classes should have

one responsibility—one reason to change.

SRP is one of the more important concept in OO
design. It's also one of the simpler concepts to
understand and adhere to. Yet oddly, SRP is
often the most abused class design principle.
We regularly encounter classes that do far too

many things. Why?

Getting software to work and making software
clean are two very different activities. Most of us
have limited room in our heads, so we focus on
getting our code to work more than organization
and cleanliness. This is wholly appropriate.
Maintaining a separation of concerns is just as
important in our programming activities as it is
in our programs. The problem is that too many
of us think that we are done once the program
works. We fail to switch to the other concern of
organization and cleanliness. We move on to the
next problem rather than going back and
breaking the overstuffed classes into decoupled
units with single responsibilities. At the same
time, many developers fear that a large number
of small, single-purpose classes makes it more
difficult to understand the bigger picture. They
are concerned that they must navigate from
class to class in order to figure out how a larger

piece of work gets accomplished.

However, a system with many small classes has
no more moving parts than a system with a few
large classes. There is just as much to learn in
the system with a few large classes. So the
question is: Do you want your tools organized

into toolboxes with many small drawers each

containing well-defined and well-labeled
components? Or do you want a few drawers that
you just toss everything into? Every sizable
system will contain a large amount of logic and
complexity. The primary goal in managing such
complexity is to organize it so that a developer
knows where to look to find things and need
only understand the directly affected complexity
at any given time. In contrast, a system with
larger, multipurpose classes always hampers us
by insisting we wade through lots of things we
don’t need to know right now. To restate the
former points for emphasis: We want our
systems to be composed of many small classes,
not a few large ones. Each small class
encapsulates a single responsibility, has a single
reason to change, and collaborates with a few

others to achieve the desired system behaviors.

C., Martin Robert. Clean Code: A Handbook of
Agile Software Craftsmanship, Kindle Edition.

Aufgaben zum Text

Zusammenfassen: Erkldren Sie in eigenen
Worten, was das Single Responsibility Principle
bedeutet.

Begriinden: Warum verstoBBen viele Entwickler
laut dem Text gegen dieses Prinzip, obwohl sie

es eigentlich gut verstehen?

Vergleichen: Der Text enthélt einen Vergleich
mit Werkzeugkasten. Erldutern Sie, was dieser

Vergleich aussagt.

Bewerten: Diskutieren Sie mit Ihren Nachbaren,
ob Sie personlich lieber mit vielen kleinen
Klassen oder mit wenigen groBen Klassen

arbeiten wirden - und warum.




