
Einführung in die OOP, Folge 3: Exkurs SRP

The Single Responsibility Principle (Gruppenarbeit)

The Single Responsibility Principle (SRP) states

that a class or module should have one, and

only one, reason to change. This principle gives

us both a definition of responsibility, and a

guidelines for class size. Classes should have

one responsibility—one reason to change.

SRP is one of the more important concept in OO

design. It’s also one of the simpler concepts to

understand and adhere to. Yet oddly, SRP is

often the most abused class design principle.

We regularly encounter classes that do far too

many things. Why?

Getting software to work and making software

clean are two very different activities. Most of us

have limited room in our heads, so we focus on

getting our code to work more than organization

and cleanliness. This is wholly appropriate.

Maintaining a separation of concerns is just as

important in our programming activities as it is

in our programs. The problem is that too many

of us think that we are done once the program

works. We fail to switch to the other concern of

organization and cleanliness. We move on to the

next problem rather than going back and

breaking the overstuffed classes into decoupled

units with single responsibilities. At the same

time, many developers fear that a large number

of small, single-purpose classes makes it more

difficult to understand the bigger picture. They

are concerned that they must navigate from

class to class in order to figure out how a larger

piece of work gets accomplished.

However, a system with many small classes has

no more moving parts than a system with a few

large classes. There is just as much to learn in

the system with a few large classes. So the

question is: Do you want your tools organized

into toolboxes with many small drawers each

containing well-defined and well-labeled

components? Or do you want a few drawers that

you just toss everything into? Every sizable

system will contain a large amount of logic and

complexity. The primary goal in managing such

complexity is to organize it so that a developer

knows where to look to find things and need

only understand the directly affected complexity

at any given time. In contrast, a system with

larger, multipurpose classes always hampers us

by insisting we wade through lots of things we

don’t need to know right now. To restate the

former points for emphasis: We want our

systems to be composed of many small classes,

not a few large ones. Each small class

encapsulates a single responsibility, has a single

reason to change, and collaborates with a few

others to achieve the desired system behaviors.

C., Martin Robert. Clean Code: A Handbook of

Agile Software Craftsmanship, Kindle Edition.

Aufgaben zum Text

Zusammenfassen: Erklären Sie in eigenen

Worten, was das Single Responsibility Principle

bedeutet.

Begründen: Warum verstoßen viele Entwickler

laut dem Text gegen dieses Prinzip, obwohl sie

es eigentlich gut verstehen?

Vergleichen: Der Text enthält einen Vergleich

mit Werkzeugkästen. Erläutern Sie, was dieser

Vergleich aussagt.

Bewerten: Diskutieren Sie mit Ihren Nachbaren,

ob Sie persönlich lieber mit vielen kleinen

Klassen oder mit wenigen großen Klassen

arbeiten würden - und warum.

