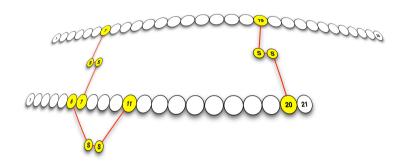

Grundprinzip der gentechnischen Insulinherstellung

Menschliche Insulin-DNA wird in Bakterien übertragen, die daraufhin jede Menge menschliches Insulin herstellen.

Struktur des Insulins


Ein Peptid aus zwei Ketten

Das "fertige" Insulin besteht aus zwei Peptid-Ketten, die durch Disulfidbrücken miteinander verknüpft sind. Hergestellt wird das "fertige" Insulin aus einer längeren Peptidkette durch "Schneiden und Kleben" im Golgi-Apparat und im ER (Protein-Prozessierung nach der Translation).

Probleme bei der Insulinherstellung

Ein Peptid aus zwei Ketten

Für jede der beiden Ketten wird eine künstliche DNA hergestellt.

Die DNA für die A-Kette wird in einen Bakterienstamm eingebaut, die DNA für die B-Kette in einen zweiten Bakterienstamm.

Die A-Ketten und die B-Ketten werden dann getrennt synthetisiert.

Die isolierten A- und B-Ketten werden dann zusammengeführt, indem man die Cystein-Bausteine der Ketten miteinander reagieren lässt, so dass sich Disulfidbrücken bilden.

Gewinnung der Insulin-DNA

Im Prinzip gibt es drei Möglichkeiten.

1. Shotgun cloning (veraltet)

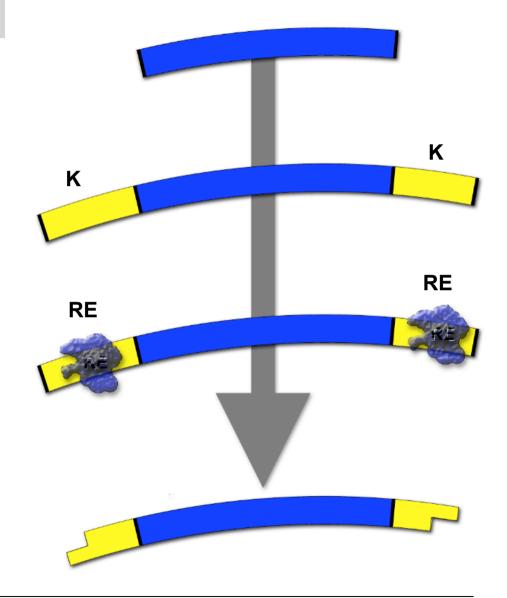
Das gesamte menschliche Genom wird mit Restriktionsendonucleasen in kurze Bruchstücke zerlegt. Mit einigem Glück findet man auf einem der Bruchstücke das intakte Insulin-Gen.

2. Reverse Transkription

Aus fertiger (gespleisster) Insulin-mRNA gewinnt man intronfreie Insulin-DNA.

3. Herstellung künstlicher Insulin-DNA

Da man die Basensequenz des Insulin-Gens kennt, kann man einen entsprechenden DNA-Abschnitt künstlich herstellen. Dieses Verfahren wird heute angewandt, weil man damit das Insulin-Problem besser lösen kann (getrennte Herstellung einer A-Ketten-DNA und einer B-Ketten-DNA).


Nachbehandlung der Insulin-DNA

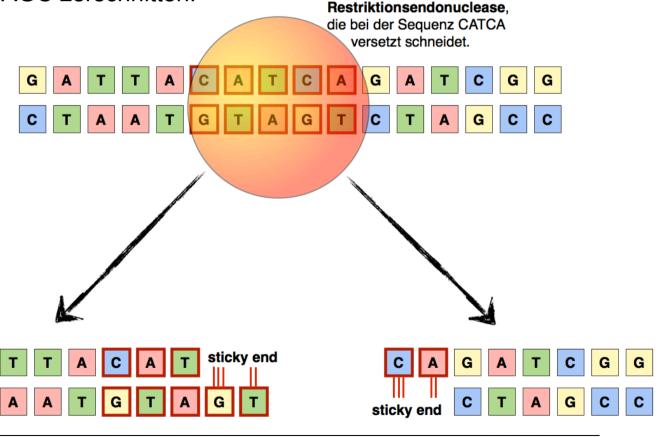
Es fehlen noch "Klebestreifen"

Die Insulin-DNA muss in ein Plasmid eingebaut werden.

Dafür müssen links und rechts künstliche "Klebestreifen" (**K**) angesetzt werden.

Diese "Klebestreifen" sind DNA-Sequenzen, die eine Schnittstelle für eine bestimmte Restriktionsendonuclease (**RE**) enthalten.

Restriktionsendonucleasen


Bakterielle Enzyme zur Abwehr von Viren

Restriktionsendonucleasen sind **bakterielle Enzyme zur Abwehr von Viren-DNA**. Eingedrungene Viren-DNA wird durch Restriktionsendonucleasen an spezifischen Basensequenzen wie z.B. TAGC zerschnitten.

Dabei können sticky
ends (klebrige Enden)
entstehen, welche das
Zusammenfügen der
Bruchstücke mit anderer
DNA erleichtern.

Restriktionsendonucleasen sind wichtige **Werk**-

zeuge der Gentechnik

